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Abstract--A hydrodynamic model has been developed to predict void fraction and pressure gradient for 
one-dimensional two-phase flow through porous media. The model includes discussion of flow regimes 
and their relationship with flow and porous layer configurations. The particle-gas drag, particle-liquid 
drag and liquid-gas interfacial drag are then evaluated theoretically from the flow configuration associated 
with each flow regime. The above drag models are then employed in conjunction with force balances on 
the two phases to obtain the void fraction and pressure gradient as functions of liquid and gas superficial 
velocities. Results are found to agree very favorably with existing experimental data obtained in both 
co-current and counter-current flow conditions. 

It has also been found that this hydrodynamic model is capable of fully describing essential features 
of the flooding phenomenon observed in counter-current flow of immiscible fluids. Furthermore, 
counter-current flooding limits predicted using this hydrodynamic model are found to agree well with 
existing correlations in the literature. Seemingly conflicting experimental observations reported by various 
authors on the behavior of void fractions and pressure drops near the flooding limit can also be resolved 
by the present model. 

1. I N T R O D U C T I O N  

Basic understanding of two-phase flow through porous media is of interest in many nuclear, 
chemical and geophysical applications. For example in light water reactors one of the accident 
scenarios considered in safety evaluation is the degraded core accident. In-place recovery from a 
degraded core accident depends on the rate at which energy can be removed. Under a constant 
pressure difference one of the major parameters controlling the coolant flowrate and hence energy 
removal rate is the two-phase pressure drop. Therefore, a reliable hydrodynamic model for 
two-phase flow through porous media is of utmost important in the assessment of debris 
coolability. In the event of prolonged overheating of the debris, quenching must first be 
accomplished before the quasi-steady heat removal rate from the debris can be established. 
Generally, quenching may be attempted either by dumping coolant on top of the hot debris or by 
forcing coolant into the debris from below. In either mode of quenching, extensive information 
on two-phase flow resistance and forced flow boiling heat transfer is required for accurate 
assessement of debris quenchability. 

Several experimental and analytical studies on hydrodynamic aspects of two-phase flow through 
porous media have been reported in the recent literature. Vasiliev & Maiarov (1979) analyzed heat 
transfer and pressure drop in forced flow cooling of volumetrically heated porous medial. In their 
model, two-phase pressure drop was obtained by treating the two-phase mixture as a single fluid 
with properties obtained by an averaging process which included the flow quality. Such a model 
is speculative at best and offers no insight into other aspects of the two-phase flow process. Naik 
& Dhir (1982) employed a separated flow model to evaluate two-phase pressure drop. In their 
model, the void fraction was correlated as a function of the flow quality and mass flowrate. The 
model worked reasonably well for a water-steam mixture at atmospheric pressure. However, it 
under-predicted pressure drop for fluid mixtures with a higher vapor liquid density ratio, as has 
been shown by Tung et al. (1983). Tutu et al. (1983) pointed out the importance of the interfacial 
drag for porous layers composed of coarse particles. However, their model of the interfacial drag 
showed a large discrepancy with respect to their own experimental results. Schulenberg & Muller 
(1984) correlated particle drag using the concept of relative permeabilities. The interfacial drag 
was correlated with a parameter containing capillary force. However, at void fractions > 0.4 their 
data showed a large scatter with respect to the correlation. Chu et al. (1983) obtained extensive 
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data on pressure drop and void fraction in co-flow and counter-flow of air and water. In their work 
a semi-empirical drift flux model was developed to predict void fractions as a function of liquid 
and gas flowrates. Expressions for relative permeabilities were also given by Chu et al. However, 
different relative permeabilities had to be employed for co-current and for counter-current flows 
to fit the pressure drop data. The drift flux model of Chu et al. was later improved by Dhir (1984) 
to include a correction factor due to the motion of bubbles around surfaces of particles. Even 
though this approach worked well for co-current flows it generally resulted in over-prediction of 
the flooding limits when applied to counter-current flows. 

Early studies on counter-current flooding were motivated by potential applications in absorption 
towers employed in the chemical industry. Sherwood et al. (1938) performed an experimental study 
on flooding velocities in packed columns. They found that for large-size packing materials, the 
flooding velocities of the two phases could be correlated with dimensionless groups based on inertia 
of the fluid streams. Subsequent studies by Lobo et al. (1946) and Dell & Pratt (1951) resulted in 
similar findings. Wallis (1969) compiled all the data and arrived at a much simpler correlation 
which enjoyed wide acceptance in the chemical industry. Wallis's correlation however tended to 
under-predict the flooding limits observed in columns packed with spherical particles. 

Marshall & Dhir (1984) performed an experimental study of counter-current flow in porous 
media composed of spherical particles. Based on their flooding data they arrived at a correlation 
for the flooding limits. The functional form of their correlation is similar to that of Wallis except 
that the empirical constant is about 15% higher. Schrock et al. (1984) also performed similar 
experiments in a different range of liquid velocities and obtained another correlation which is 
slightly different from the correlations of Wallis (1969) and Marshall & Dhir (1984). It should be 
pointed out that in all of the flooding correlations nondimensionalization of the velocities is based 
on the inertia of the two phases and the specific surface area of the material forming the porous 
layer. 

Since the counter-current flooding limit generally controls dryout heat fluxes in porous media, 
considerable interest has been generated recently over the possibility of employing hydrodynamic 
models in predicting dryout. Hardee & Nilson (1977) proposed a laminar flow model for two-phase 
flow in porous medial composed of small particles, while Lipinski (1981) proposed a turbulent flow 
model for larger particles. In their models no serious attempt was made to model the interfacial 
drag between the two phases. Jones et al. (1980) employed an optimizing process with assumed 
relative permeabilities to obtain void fractions at flooding in their laminar annular flow model. Dhir 
& Barleon (1981) on the other hand employed a geometric argument to obtain void fractions at 
flooding. Applicability of the above models is restricted to calculation of dryout heat fluxes. 
Lipinski (1984) and Schrock et al. (1984) have predicted dryout heat fluxes using their limiting flow 
correlations which include the concept of relative permeabilities of the two phases. 

Although predictions made from most of the above models compare reasonably well with dryout 
heat flux data, the models cannot be used for flow conditions different than that at the flooding 
limit. The models also fail when extended to co-flow conditions. The main reason for deficiency 
in these models is the lack of mechanistic details of the drags experienced by the different phases, 
including the interfacial drag. 

The objective of the present work is to develop a one-dimensional model for two-phase flow in 
porous media made up of large size particles. The model includes submodels for flow regime 
transitions and the particle-liquid, particle-gas and liquid-gas interfacial drags. A verification of 
the model is sought through comparison with available co-current flow data. The model is also 
used to predict the flooding limit observed in counter-current flow through porous media. 

2. ANALYSIS 

Prior to the modeling of two-phase flow, it is necessary that the flow patterns and their 
geometrical configurations be identified. Chu et al. (1983), based on their visual observations in 
porous media composed of large-size particles (D r >/6 mm), reported a distinct change in flow 
patterns with an increase in the void fraction. At low void fraction, bubbly flow existed in the pores. 
As the void fraction was increased with increasing gas superficial velocity, bubbly flow gave way 
to slug flow and eventually the flow became annular. Figure 1 shows sketches of the observed flow 
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Figure 1. Sketches of  flow patterns in different flow regimes. 

patterns. The flow patterns appear to have features very similar to those observed in tubes. It 
should be noted that the flow patterns shown in figure 1 are obtained with an adiabatic flow of 
gas and liquid. In a boiling system the flow configuration can differ substantially if film boiling 
is present on the particles, and to a limited extent in the presence of nucleate boiling. 

Flow Regimes 
A flow regime map based on the early UCLA data was presented by Dhir (1984). Such a flow 

regime map could be used to guide the evaluation of various drag forces. However, in this work 
different flow regimes, namely bubbly flow, slug flow and annular flow, along with the associated 
transitions are first modeled. 

Bubbly flow 
At low void fractions the flow configuration is characterized by the motion of discrete bubbles. 

Initially, the bubbles tend to adhere to the particles' surface and therefore travel upward along the 
surface of the particles. Although continuous breakup and reformation of bubbles take place, the 
bubbles can be assumed to be spherical in shape with an average diameter D b . The void fraction, 
~0, corresponding to the maximum number of bubbles supported by the surface of particles can 
be obtained through a simple geometrical model. The model, given in detail in the appendix, yields 
the following expression for this void fraction: 

~(1  - E )  
~ 0 = 3 ~ 7 ( 1 + 7 ) [ 6 r / - 5 ( 1 + 7 ) ]  as long as ~0/>0. [1] 

In the above equation 7 and r/are given as 

Ob 
7 = - -  [2] 

Dp 

and 

F ' ' '  
n = L6(I  _ E)A " [3] 

The bubble diameter Db employed in [2] is controlled by surface tension and buoyancy. A 
detailed discussion on the calculation of Db can be found at the end of this section. 

After maximum packing at the particle surface has occurred, the bubbles will start to move 
straight through the pores. At a still higher void fraction ~ the bubbles will merge to form slugs. 
The void fractions ~ can be deduced (see the appendix) from the work of Marshall & Dhir (1984) 
on porosity of a binary mixture of different size particles. The expression for void fraction at the 
onset of bubble merger is obtained as 

~l = 0.6(1 - 7)z as long as ~1 < 0.3. [4] 

Since in the limit as 7 --* 0 the flow in the pores will be similar to that in a tube, the transition 
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void fraction can not exceed that in the tube. Hence applicability of [4] is limited to a void fraction 
<0.3. 

Bubbly-slug flow 

At void fraction el some bubbles will start to merge into slugs. The transition from bubbly to 
slug flow, however, is a smooth one and there is a range of void fraction in which bubbles and 
slugs co-exist. The upper bound of this region can be obtained by assuming that transition is 
complete when the void fraction corresponds to the lightest packing of slugs, i.e. a cubic array. 
In this conceptualization the slugs are replaced by equivalent volume spheres which fill the pore 
space and arrange themselves in a cubic array. The void fraction, ez, corresponding to this 
arrangement is obtained from Scheidegger (1960) as 

= g-  [51 

Therefore the bubbly to slug flow transition will end at a void fraction of n/6. 

Pure slug flow 
The regime of pure slug flow begins at void fraction ~2. As the void fraction increases the slugs 

are packed more densely together. However, there is an upper value ~3 beyond which the slugs 
themselves will merge to form continous gas paths. At this void fraction transition to annular flow 
begins. In obtaining the void fraction corresponding to this transition it is conceptualized that the 
slugs are replaced by spheres which fill the pores. 

Even though the packing of slugs may be different from the packing of spheres, it is the 
center-to-center distance between two adjacent slugs which determines the void fraction at merger. 
This distance is at a minimum when two slugs are parallel to one another. A maximum is reached 
when they are perpendicular to each other. On average, this distance may be represented by the 
diameter of a sphere whose volume is the same as that of a slug. These equivalent spheres acquire 
a natural packing while filling the pore space. The void fraction representative of this natural 
packing is simply obtained as 

~3 = 0.6. [6] 

Slug-annular flow 
Departure from pure slug flow begins at void fraction ~3- The transition to annular flow is also 

a smooth one with an upper bound ~4. The void fraction a4 is taken to be that corresponding to 
the densest possible packing of the pore space by the equivalent spheres. The densest packing occurs 
when the equivalent spheres are arranged in a rhombo-hedral array, i.e. slugs have to merge 
completely if more gas is present in the pores. Thus onset of annular flow will occur at 

FI 
~4 = 6 

Pure annular flow 
At void fractions higher than ~4, the slugs merge completely to form continuous gas flow paths. 

The liquid then flows along the surface of the particles as a thin film. At very high gas flowrates 
it is conceivable that some liquid may detach from the liquid-gas interface and appear as entrained 
droplets. However, this will occur at void fractions very close to unity. Therefore, in the present 
model, pure annular flow is assumed to persist up to ~ ~- 1. 

Bubble and slug size 
For the large particles considered in this paper, the pore size is much larger than the bubble 

diameter. Therefore, the bubble diameter is generally determine by surface tension and buoyancy. 
In the present work, the value of Db is taken as 

l ~" 1 ~/2 
Db = 135[g(o L-  ooiJ ' t81 
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Figure 2. Forces acting on the two phases. 

where the constant of proportionality 1.35 is determined from photographs taken during 
experiments performed by Chu et al. (1983). Similarly, it was observed from these photographs 
that the lateral dimension of the slug is also given by [8]. The slug length, on the other hand, is 
dependent on a delicate balance between inertia force, which tends to break it up, and surface 
tension force, which tends to hold it together. However, a detailed analysis of the slug length is 
beyond the scope of the present work. Therefore, the length of the slug will be taken from 
above-mentioned photographs as 

Lb 8. [9] 
Db 

Forces on the Two  Phases  

Gas and liquid flow configurations in a unit volume cell representing cross-sectionally averaged 
flow conditions are shown in figure 2. Even though the annular flow configuration is shown, the 
force balances obtained should be equally applicable to other flow regimes. 

Since particles are not in direct contact with the gas, their effect on the gas phase is strictly 
restricted to what is felt across the liquid layer. Therefore, the actual interfacial drag between the 
two flowing phases is broken into two components as shown in figure 2. The first component, F ~ ,  
is opposed by an equal and opposite force applied by the particles on the other side of the liquid 
layer. In this context, Fpc can be viewed as a particle-gas drag. The second component, F~, is the 
drag force on the gas as a result of relative motion between the two phases. If  ct is the active void 
fraction,t the force balance on the gas phase is given by 

dP 
dz  ore = pogOtE + Fro + Fi. [10] 

Similarly, the particle drag on the liquid can be broken into two components FpG and FpL. The 
first component Fpo is simply a reaction to the force by which the gas pushes the liquid against 
the particles. The second component FpL represents the force acting on the particles due to the liquid 
motion. The force balance on the liquid then yields 

dP 
dz (1 - ~t)E = pLg(1 -- 0t)e + FpL -- Fi. [11] 

It should be noted that FpG, FpL and F~ represent the drag forces per unit of total bed volume. Since 
the size of the particles considered in this work is large, the capillary effect will be confined to a 
very small fraction of the pore volume and hence is neglected. Because of interfacial tension, the 
pressure in the gas phase will be slightly higher than that in the liquid. However, the pressure 

"tit has been observed by Chu et al. (1983) that in porous layers composes of small particles a certain volume of gas remains 
trapped in the interstitials. However, for the large-size particles considered here the volume of trapped gas will be very 
small. 
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difference between gas and liquid will remain constant in the direction of flow. As such, the pressure 
gradient in the direction of flow is the same for both phases. In [10] and [11], z is the distance in 
the direction of flow, E is the porosity, PL and Pc are the liquid and gas densities, respectively, and 
g is the gravitational acceleration. By defining the dimensionless variables 

- d P  

dz 
P* - [12] 

g(PL -- Pc)' 

F 
F* [13] 

gE(PL -- Pc) 

and 

[10] and [11] become 

and 

, PG [14] P 
PL 

P*a -- (1 -- p*~ + F ~  + F* [15] 

(1 - ~ )  
P*(1 - ~) = (1 - p~) I- F*L -- F*.  [16] 

Equations [15] and [16] involve five variables and as such three more relationships are needed before 
these equations can be solved explicitly. In the following sections, models for the three variables 
F ~ ,  Fp*t and F* are presented. 

Particle-Gas Drag Model 

In single-phase flow, the particle-gas drag force per unit of total bed volume can be obtained 
from the Kozeny-Carman equation as 

dP 
Fr~ = - ~ E = E (a/~c, jG + bpc, j'2), [17] 

where JG is the superficial velcoity of the gas based on the total bed area and the constants a and 
b are defined as 

a =  150 (1-E)z  and b =  1.75 (1-c---~) [18] 
3 2 E 3 D p  " E O p  

Since the liquid is always in contact with the particles and Fpc is being modeled as the force by 
which the gas pushes the liquid against the particles, the system of particles and liquid may be 
considered as an isotropic porous layer with porosity E~. Also, the particle diameter must be 
corrected for the increase in particle volume due to the liquid layer, yielding an effective diameter 
of [(1-6~)/(1--£)]l/3Dp. Using the effective porosity ca and the corrected particle diameter, 
parameters a and b become 

a (1-Eo(~  4/3 b ( 1 -  Eo~'] 2/3 [19] 
~ t = ~ \ ~ )  and B = ~ \ T L - ~ - ¢  j . 

In the separated flow (annular flow) model shown in figure 2, gas occupies only Ea volume fraction 
of the bed. Therefore the r.h.s, of [17] should be multiplied by a. By using fi and 6 instead of a 
and b in [17] and multiplying it by a, the particle drag force on the gas in the annular flow regime 
can be written as 

[O a ,ojo (1 1 [201 
Fp~=EL(I_E)4/3 ~2 ~ ~--_~-~ 7 ]  
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In bubbly and slug flows, the gas follows a tortuous path and has all of the flow area accessible 
to it. For these flow regimes [17] should not be multiplied by a. Thus for bubbly and slug flows, 
the particle drag on the gas is given by 

F 
PG 

= ~ 

[ 

(1 - &X)4’3 apGjG + (1 - 6a)2’3 bpj& 

(1 - 6)4/3 a3 (1 -E)*‘~ a3 1 ’ Pll 

Nondimensionalization of [20] and [21] in a manner similar to [13] yields 

a*pLGic + b*pd& 
F:G=k 

G x-’ 

WI 

where 

a* = 
a 

b* = 
b 

dPL - PG)’ g(PL - PC) 

and kG and vG are relative permeabilities. The relative permeabilities are defined as: 

(i) 0 6 a < a3 (bubbly and slug flows), 

~231 

413 

a3 
213 

a3; 

(ii) a4 < a < 1 (pure annular flow), 

P51 

(iii) a3 < a < a4 (transition). 

The transition from slug to annular flow occurs as the void fraction increases from a3 to a4. In 
this range of the void fraction, a simplistic approach will be to form a weighting function between 
[20] and [21]. A smooth transition between the two flow regimes can be obtained by defining the 
weighting function as 

W = <*(3 - 25) where 5 = s. 
4 3 

The relative permeabilities in this transition flow regime then can be given by 

and v71 

The above weighting function W has been chosen such that the relative permeabilities are 
continuous to the first derivative at the end points. 

Particle-Liquid Drag Model 

The particle-liquid drag can be modeled in the same manner as the particle-gas drag. However, 
since the liquid is always in contact with the particles, the particle diameter and the solid fraction 
term (1 - 6) in parameters a and b need not be corrected. Nevertheless, porosity should be 
multiplied by (1 - u). Also, the liquid follows a tortuous path even up to a N 1 and all of the pore 
space is accessible to it. As such, the liquid friction pressure drop equation will be similar to [17] 
for the gas. The dimensionless particle-liquid drag is thus given by 

Fp*=- a*pLjL + b*PLjLljL I 

kr_ 
3 

VL 
P81 

where 

k, = qL = (1 - a)3. [291 
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It should be noted that the relative permeabilities defined in this section are employed only to 
obtain the particle drag on each phase. These should not be confused with the definitions given 
in Scheidegger (1960), where for co-flow the contributions of particle drag and interfacial drag are 
lumped together. 

Liquid-Gas Interfacial Drag Model  

The interfacial drag, F~, is defined as the total drag on the gas phase per unit volume of the 
porous layer induced by the relative motion between the two phases. The approach here will be 
to develop an expression for the drag on a single bubble/slug and then multiply it by the number 
of bubbles/slugs per unit volume of the porous layer. 

Bubbly f low (0 <<. ~ <<. cq ) 

The drag on a single bubble will depend on the velocity of the bubble relative to the two-phase 
mixture velocity. At very low relative velocities (Stokes flow) viscous effects will dominate. At high 
relative velocities the main contribution will come from form or inertial drag. In this work an 
expression applicable over a wide range of relative velocities is obtained by superimposing the two 
drags. Such an approach gives correct limiting values at the expense of slight inaccuracy at 
intermediate velocities. The expression for drag on a single bubble is written as 

Fd = Cv3~ZOb/aL(~) + Ci O2pm [30] 

In the above equation Cv and C~ are the viscous and inertial drag coefficients for a single bubble, 
respectively; Pm is the mixture density, defined as 

Pm = pL(l -- a + p ' a ) ;  [31] 

and Js is the drift velocity of the bubble relative to the mixture, given by 

• ( 1  - ~) 
J s = J G - -  JL. [32] 

For a single bubble in an infinite pool of liquid, the drag coefficient, Cv, has a value of unity, 
whereas Ci is 0.45 in Newton's regime where inertial drag dominates and the drag coefficient 
remains constant. The presence of other bubbles, especially when a bubble moves in the wake of 
another bubble, can influence the drag. The influence, however, will be limited to Newton's regime. 
Ishii & Chawla (1979) have shown that for flow in tubes, the correction factor to Ci should be 
( 1  - a)3. Here it is proposed that this correction factor will also be valid for flow in porous layers 
composed of large particles. Furthermore, Dhir (1984) has shown that the superficial relative 
velocity j~ must be multiplied by a geometric factor given by 

f = ~ (1 + 7)ln 1 + [33] 

when bubbles move along the surface of the particles. The number of bubbles per unit volume of 
the porous layer is given by 

QtE 
N - [34] 

7~ ~Dg 
By multiplying [30] with [34] and using the correction factors to C, and j~, the dimensionless form 
of the interfacial drag in bubbly flow is obtained as 

VLZ , (1 -- 0t + p*ct)j~ 
F* = C'~ gO~(1 - p *)e + Ci  gffb('l ~ p - - - - ~ '  [35] 

where the coefficients C'v and C~ are given as: 

0 ~ < ~ < % ,  

C; = 18af [36] 
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and 

and 

C~ = 0.34(1 - ct)3~tf 2; 

~t0~<~ ~<ct I , 

Cv = 18(~0f+ ct - ~0) 

C~ = 0.34(1 - ~)3(Ctof  2 q- ~t - Cto). 

[37] 

[381 

[39] 

Slug flow (~2 <<. • <~ ~3) 
Slugs generally can be considered as long, thin ellipsoids whose lateral dimension is Db and whose 

length is given by [9]. An expression for the drag force on such a slug, which includes both the 
viscous and inertial components, can be written as 

6.94rCDbgL~ 1 C 7z 2 ['Js"x2 Fd + ~ i-~ D b P m ~ ) -  [40] 

The viscous term in [40] is obtained from the solution of Stokes flow around an ellipsoid given 
by Lamb (1932). Based on available data in the literature, the inertial drag coefficient C~ has been 
evaluated by Ishii & Chawla (1979) for tube flow as 

Ci = 9.8(1 - ~)3. 

The number of slugs per unit volume of the porous layer is given by 

N - - -  
4 3" 

-6 D~,Lb ~ rcDb 

[41] 

[42] 

Since slugs are fairly long and extend beyond a pore length, they do not flow along the particles 
as do the spherical bubbles at void fractions less than 0t 0. Consequently, a geometrical correction 
on j~ is not needed. Multiplication of [40] with [42] yields the following expression for F~: 

i.ZLJs(x. 3 ciPL(l_o~_l_p,o~ ) (j!)2. 
Fi = 5.21 ~ -I- ~ Db E~ [43] 

Equation [43] when nondimensionalized using [13] results in an expression for F* identical to [35], 
where the coefficients C'v and C~ are given by 

and 

Bubbly-slugflow (~t I ~< ~ ~< at2) 

C; = 5.2let [44] 

C{ = 0.92(1 - ~t)3ct. [45] 

A smooth transition between bubbly and slug flow can be obtained by defining a weighting 
function for C'v and C~ similar to [26]: 

_ ~ - -  ~ t  [ 4 6 ]  W = ~ 2 ( 3 - 2 ~ ) ,  where ~ e2-~q" 

The interfacial drag in this flow regime can be given by [35] with C'v and C~ defined by 

and 

Annular flow (~ >1 0t4) 

C~ = 18(~t0f + ~t - ~to)(1 - W) + 5.21ct W 

C[ = (1 - ct)3 {0.34(0tof + ~ - ~)(1 - W) + 0.92~tW). 

[47] 

[48] 

In the annular flow regime, the interfacial drag induced by the relative motion between the two 
phases can be modeled in a manner similar to the particle-gas drag. However, the reference velocity 
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must be taken as 

Ot 

Jr =JG 1- _ aJL [49] 

to account for the slip between the two phases. Furthermore, instead of  obtaining Fi as the force 
exerted by the liquid on the gas, one can obtain F~ as the force exerted by the gas on the liquid. 
Therefore, by employing the modified particle diameter and porosity in the Kozeny-Carman 
equation and multiplying the resulting pressure gradient by E(1 --ct) to account for the flow area 
of liquid, the interfacial drag F~ can be obtained as 

Fi = E(1 -  )(a dr - 6Pdr ), [50] 

where the parameters a and 6 are given by [19]. Nondimensionalization of [50] in a manner similar 
to [13] results in 

Fi * = ( 1 - O Q (  a*#Gjr b*paJ~  [51] 

o r  

* b*PGj~, a #G. ~ [52] 
F * =  ~ J ~  1--ot t/C 

where kG and r/G are given by [25] and Js is given by [32]. 

Slug-annularflow (a 3 < a < ~4) 

In the transition flow regime, the weighting function defined by [26] may also be used to obtain 
the dimensionless interfacial drag: 

[ - , , ,  VL(1 --_ PW)*)E ~a*#G _11 F *  + w j ,  

- - W j ~ ,  [ 5 3 ]  
E2gDb(1 -- p*)  ~ 1 Ct fiG 

where kc and r/G are given by [25]. 

3. RESULTS AND D I S C U S S I O N  

The models for particle-gas drag, particle-liquid drag and liquid-gas interfacial drag can now 
be employed in conjunction with the force balances on the liquid and gas phases to predict the 
void fraction and the two-phase pressure drop. Elimination of  the pressure gradient between [15] 

and [16] yields 
~(1 - a) + ctF*L -- (1 -- or)F* G -- F* = 0. [54] 

For given superficial velocities JL and JG, determination of the void fraction from [54] requires an 
iterative process. The iterative procedure is complicated by the fact that the drag forces depend 
on the flow regime and in turn on the void fraction. However, in this work the predictive procedure 
is simplified by assuming that JL and ot are given. Knowing a the relative permeabilities k L, k G , /~L 
and r/G and the viscous and inertial drag coefficients can be evaluated. Once this has been 
accomplished [54] becomes a quadratic equation in the superficial gas velocity JG. One of the two 
roots of the equation is physically realistic and corresponds to positive values Ofjc. The other root 
is a parasitic one which yields negative values of Jc- This root is discarded. Using the above 
procedure a curve ofjG VS a can be generated for a fixed liquid superficial velocity. The pressure 
gradient can be calculated using either [15] and [16] or by adding the two equations to yield 

p ,  = (1 - -  0t + p * 0 t )  + fpL* + FpG.* [55] 
(1 - p * )  
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In the above equation, the first term simply represents the hydrostatic head of  the twoiphase 
mixture and the second and third terms represent the particle drag on the two phases. 

Co-curren t  F low (JL >/ 0) 

Figure 3 shows the void fraction and pressure gradient as functions of  the gas superficial velocity 
for a particle diameter of 19 mm. Two sets of  results corresponding to liquid superficial velocities 
of  0 and 9.15 mm/s are plotted as solid and dashed lines, respectively. Also plotted in figure 3 are 
data from Chu et  al. (1983) under the same conditions. Initially the void fraction can be seen to 
increase very rapidly with increasing JG for a fixed liquid flowrate. However, the increase in void 
fraction ~ tends to slow down at higher Jc. Furthermore, for a given JG it can be seen that 0t 
decreases slightly with an increase in liquid flowrate. This is consistent with Dhir's (1984) model 
based on the drift flux approach. For  the case of  zero liquid flowrate, the pressure gradient initially 
decreases rapidly with an increase in the gas flowrate. The decrease results from a reduction in the 
hydrostatic head as the void fraction increases. At higher gas flowrates, an increase in particle drag 
compensates for the reduction in hydrostatic head and the overall pressure gradient remains fairly 
constant over a large range of gas flowrates. Here it should be mentioned that steady-state 
operation at zero liquid flowrate is possible only up to the onset of annular flow. At a liquid 
flowrate of  9.15 mm/s, the observed pressure gradient initially shows a behavior similar to the zero 
liquid flowrate case. However, as the gas velocities are increased further the particle drag increases 
at a rate faster than the reduction in hydrostatic head. As a result the overall pressure gradient 
goes through a local minimum at a gas superficial velocity of  0.26 m/s. The predictions are within 
10% of the void fraction and pressure gradient data obtained for liquid flowrates in the range 
0 -  20 mm/s and gas flowrates in the range 0-1.5 m/s. 

Figure 4 shows the void fraction and pressure gradient as functions of the gas superficial velocity 
for a particle diameter of 9.9 mm. Again predictions along with the data from Chu et  al. (1983) 
are plotted for liquid velocities of 0 and 9.15 mm/s. Essentially, the same trends are observed for 
JG dependence on void fraction and pressure gradient as were observed for the cases plotted in figure 
3. However, at a liquid flowrate of  9.15 mm/s the particle drag becomes more pronounced at 
relatively low gas velocities for the smaller particles. Consequently, the local minimum in the 
pressure gradient is shifted to a gas velocity of  0.16 m/s compared to a value of  0.26 m/s for 19 mm 
particles. The prediction are seen to agree quite well with the data. 

A comparison of  the observed void fractions with those predicted from the present model and 
the model proposed by Dhir (1984) is made in figure 5. In Dhir's model a drift flux approach was 
used and unknown constants were adjusted empirically. In the present model a mechanistic 
approach is used which includes submodels for the particle-gas, particle-liquid and interfacial 
drags. The present model compares quite favorably with the data. The model proposed by Dhir 
generally predicts the void fractions within about 10% as long as the void fractions do not exceed 
the limit of the model (~ < 0.6). 

1.6  | I I I I I I I I [ 

1.4 f J L (ram/s) --;*too a 
Predictions 

o • o 
1 .2  9 . 1 5  • ~ . . . .  

1.0 

0.6 

f " 
-z~ OO 

0.4 

0.2 E = 0.40 
I I I I I I I I I 

o o _ 2 o4. 0.6 o.e u.o 

j~ ( m / s )  

Figure 3. Comparison of predicted pressure gradient and 
void fraction with experimental data. Co-current flow, 

Dp = 19 ram. 

¢J 

L 6  | i i i i i i [ i i 

E 
Doto Predictions / / 

1.4 h(mm/s) p" a .,./ 
0 • 0 - , ' /  

i . Z  9 . 1 5  • ~ ,,, ~ ' ~ /  

/~.// Op = 9.gmm 
I O  1 • = 0 . 4 0  

0.8 ' ~  

0.6 

0.4 

0.2 

i I i I I 
o o 0'2 o'4 0'6 0'6 ,o 

jo (m/s) 
Figure 4. Comparison of  predicted pressure gradient and 
void fraction with experimental data. Co-current flow, 

Dp = 9.9 mm. 



58 V. X. TUNG and V. K. DHIR 

0.8 

07  

0.6 

0.5 

(2 0.4 

0 3  

0.2 

o.i t I 

0 
0 

I I I I I 

P resent  Mode l  
Dhir A 
jL = 566 mm/s ~ ~ ~  
JL = 9.15 mmls ~ ~ 0 ~ , ' • " ~ - N  

= t'i 'rift/s 

r Data f r o m  C h u  

, ~  Dp =9.9  m m  

/fl Sy~ol jJ~/~l 
/ 0 3 6 6  

I • 9.15 

I I I I I 
0.2 0 4  0 6  0.8 I0  

Jo ( m / s )  

Figure 51 Comparison of observed void fraction with those predicted by Dhir (1984) and by the present 
model. 

Counter-current Flow (JL ~< 0) 

Calculation of the void fraction and pressure gradient can be carried out in the same manner 
as in co-current flow except that liquid velocity is now negative. Figure 6 shows the predicted void 
fraction and pressure gradient as functions of gas flowrate for a particle diameter of 19 mm and 
liquid superficial velocities of - 3.89 mm/s and - 11.67 mm/s. The results corresponding to liquid 
flowrates of - 3.89 mm/s and - 11.67 mm/s are plotted as dashed and solid lines, respectively. Also 
plotted in figure 6 are void fraction and pressure gradient data obtained by Marshall & Dhir 0984) 
under the same liquid flowrates. As the superficial velocity of gas is increased, the void fraction 
initially increases very rapidly. The rate of increase however decreases with the superficial gas 
velocity until a critical gas velocity is reached. At this velocity a rapid increase in the void fraction 
is predicted. The critical gas velocity is generally referred to as the flooding velocity. The 
dimensionless pressure gradient shows a gradual drop until the flooding limit is reached. At the 
flooding limit a rapid drop in the pressure gradient is also predicted. The predictions from the 
present model compare well with the data of Marshall & Dhir (1984). The void fraction and 
pressure gradient data reported by Marshall & Dhir do not cover, however, the full span of gas 
flow rates for the cases shown in figure 6. As such, a comparison of the behavior near the flooding 
limit cannot be made. 

Figures 7 and 8 show a comparison of the predicted and observed void fraction and pressure 
gradient in porous layers composed of 9.9 and 5.8 mm dia particles, respectively. The predictions 
compare reasonably well with the data. However, the model appears to over-predict the void 
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fraction for 5.8 mm dia particles• One probable reason for this difference between predictions from 
the model and the data could be that in the experiment the void data have been over-corrected 
for the presence of  nonactive voids in the porous layer• 

Counter-current  Flooding L imi t  

Under the influence of gravity, the flooding limit represents the maximum possible gas flowrate 
for a fixed liquid flowrate or vice versa• This limit is of  interest in many chemical and nuclear 
applications--some of  which were discussed earlier. Using the counter-current flooding data of  
Sherwood et al. (1938) and Lobo et al. (1946) obtained with large rashig rings, Wallis (1969) 
developed a correlation for the flooding limit in porous layers: 

j,]/2 . . t_ j , l /2  _= 0•775• [56] 

In the above equation j*  is the dimensionless superficial velocity of  each phase and is defined as 

• F 6(l--E)pk =I '/2 

As has been discussed by Wallis (1969), the correlation obtained by Dell & Pratt (1951) based on 
their counter-current flooding data in a liquid-liquid system can be reduced to the same form as 
[56] but with slightly different empirical constants. 

Marshall & Dhir (1984) experimentally investigated flooding limits in porous layers composed 
of spherical particles. In their experiments water and air were used as the denser and lighter fluids, 
respectively• The counter current flooding data covering a range of particles from 5.8 to 19 mm 
were correlated with an equation similar to [56] but with a constant of  0.875 on the r.h.s. The data 
were in the range of  0.15 ~j~l/2~ 0•73• Counter-current flooding in porous media composed of  
spherical particles with steam and water as test fluids was experimentally studied by Schrock et 
al. (1984)• For  liquid superficial velocities in the range of  0 <<,j,]/2 << 0.45, Schrock et al. correlated 
their data as 

j~038 + 0.95j,0.3s = 1•075• [58] 

In [56]-[58], the superficial velocities are nondimensionalized with the assumption that the inertial 
drag is balanced by the hydrostatic head• Such nondimensionalization has physical significance 
only when inertial terms in the Kozeny-Carman equation dominate. For low superficial velocities, 
where viscous drag dominates, the dimensionless form of  the superficial velocities as given by 
[57] is merely a convenience. For  this reason it is no surprise that for low superficial liquid 
velocities, Schrock et al. (1984) correlated their data with different exponents on the superficial 
velocities than did Marshall & Dhir (1984) and Wallis (1969)• 

The present model includes both viscous and inertial terms in the particle-gas, particle-liquid 
and liquid-gas drags and as such can be used to predict the flooding limits over the whole range 
of flow velocities. 

Figure 9 shows the predicted pressure drop and void fraction as functions of gas flowrates for 
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a particle diameter of 9.9 mm and a liquid superficial velocity of - 11.67 mm/s. It is seen from figure 
9 that for a given value ofjG, tWO sets of operating conditions (as denoted by the solid and dashed 
lines) are possible. The solid lines indicate an increase in void fraction accompanied by a decrease 
in pressure drop as JG is increased. This behavior is similar to that shown by Marshall & Dhir's 
(1984) data. The dashed lines, however, indicate the opposite trends of decreasing void fraction 
and increasing pressure drop as JG is increased. The behavior is similar to that observed by White 
(1935) and Elgin & Weiss (1939). Actual behavior of the data consistent with either of the two 
branches of the solution depends on the manner in which the flooding experiments are conducted. 
In Marshall & Dhir's experiments water was drained through a liquid-filled lower plenum such that 
water occupied all the bed area not filled by gas. Thus in their experiments, the operating point 
atjG = 0  always began with a zero void fraction, as shown by the solid lines. White (1935) and 
Elgin & Weiss (1939), on the other hand, conducted experiments in which liquid was drained into 
a gas-filled lower plenum. As such, in their experiments a nonzero void fraction existed even with 
JG = 0; this is shown by the dashed lines. From an application point of view, the experimental 
approach used by Marshall & Dhir corresponds to physical situations in which dryout is 
approached from a liquid saturated condition in the porous layer. Likewise, White and Elgin & 
Weiss' experiments correspond to physical situations similar to quenching of porous layers which 
are initially devoid of any liquid presence. 

The two branches of the solution, however, coincide at Jc = 0.12 m/s, where both void fraction 
and pressure drop exhibit infinite slopes with respect tojG. This point represents the flooding limit, 
since no solution is possible ifjG is increased beyond this value. 

Just prior to the onset of flooding the pressure gradient and void fraction show a rapid change. 
In the experiments of Marshall & Dhir, the air flowrate was increased in steps while the liquid flow 
rate was kept constant. On approaching flooding they observed a faster increase in the level of the 
liquid-gas mixture above the porous layer. This indicates that the void fraction in the bed also 
increases at a faster rate, resulting in displacement of liquid by the gas. Interestingly, the predictions 
shown by the dashed lines in figure 9 indicate very little change in the void fraction for almost the 
entire range of gas flowrates except near the flooding limit. This trend is in complete agreement 
with experimental observations reported by Elgin & Weiss (1939). The pressure drop corresponding 
to the dashed line in figure 9 is also plotted on a log-log scale in figure 10. The predictions indicate 
that the pressure drop varies almost like j~ for a large range of gas flowrates. However, as the 
flooding limit is approached, a break point occurs at about 80% of the value ofjG at the flooding 
limit. Beyond this breakpoint, the pressure drop shows a much stronger dependence on Jc. This 
is again in agreement with the observations reported by White (1935). In fact, White (1935) 
specified this breaking point experimentally as the loading point. 

Figure 11 shows the various dimensionless forces acting on the two phases for the parameters 
corresponding to figure 9. For the solution shown by the solid line the particle-liquid drag can 
be seen to increase monotonically with JG, and has an infinite slope at the flooding limit. The 
particle-gas drag increases very rapidly at small JG and ~ due to the ~t 3 term is the relative 
permeabilities. It reaches a maximum value at JG-  0.015 m/s and then decreases monotonically 
since the flow area (~) increases at a rate faster than j~. In a large range ofjG near the flooding 
limit the particle-gas drag, however, remains fairly constant. The interfacial drag initially increases 
with Jc due to an increase in the interfacial area associated with an increase in the void fraction. 
However, at higher void fractions, the term (1 - ~t)3 in the drag coefficient results in a decrease in 
the interfacial drag. Figure 11 shows that for JG > 0.06 m/s, the interfacial drag can be more than 
twice the particle-gas drag. As such, neglect of this term can result in serious errors in the 
predictions. 

Figure 12 shows a comparison of the flooding limits predicted from the present model with the 
data reported by Marshall & Dhir (1984). The agreement can be seen to be very good except in 
the range of smaller liquid flowrates. Here, it should be noted that measurements of the flooding 
limits at low flow velocities are exceedingly difficult due to the fact that a small variation in 
liquid flowrate can result in a large variation in gas velocity. A larger scatter in data at low 
superficial velocities is thus expected. 

Figure 13 shows the predictions for the relationship between j* and j* at flooding for porous 
layers formed of 5.8 and 19 mm dia particles. In this figure the correlations of Wallis (1969), 
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Schrock et al. (1984) and Marshall & Dhir (1984) are also plotted. The predictions from the present 
model follow the correlation of Schrock eta/ .  (1984) and Marshall & Dhir (1984) very closely in 
their respective ranges of data. The correlation of Wallis generally tends to give slightly lower 
values. The present model shows a rather weak dependence of the flooding limits on the particle 
size apart from what is already included in the nondimensionalization of the velocities. At low 
superficial liquid or gas velocities, viscous effects dominate and as such the predictions show a 
nonlinear variation o f j~  1/2 with j *1/2. At moderate flow velocities, however, the predictions show 
a nearly linear dependence ..]/2 " ".1/2 OfJG wlthfL , especially when a mean of the predictions for the two 
extreme size particles is considered. The predictions thus point out that for moderate superficial 
gas and liquid velocities, the form of correlations employed by Wallis (1969) and Marshall & Dhir 
(1984) is correct. However, at low superficial gas or liquid velocities, correlations of the type given 
by Schrock et al. (1984) will be more appropriate. 

Flow Regime Map 

The predictions from the present models for the flow configurations can be compared with the 
data. This is done in figure 14 for co-flow of air and water through a particulate layer composed 
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of 9.9 mm dia particles. In this figure the data for the transitions from bubbly to bubbly-slug flow, 
bubbly-slug to slug flow and slug-annular to annular flow are also plotted. The predictions compare 
quite well with the data considering the fact that the transitions were recognized visually and the 
transitions based on the model are quite sensitive to the chosen value of the void fraction. 

The flow regimes that exist in the porous layers at the onset of counter-current flooding are given 
in table 1. The predictions are made for particles of 19, 9.9 and 5.8 mm dia and the tabulated values 
are for the range ofj~ "/2 in a given regime. It is noted that for a given particle size, the flow regimes 
at flooding are sensitive to the superficial liquid or gas velocities. As a result, flooding can occur 
in bubbly, slug or annular flow. Similarly, for a fixed superficial liquid velocity, the flow regime 
at flooding can be particle size dependent• For example, at j~/2 = 1, bubbly flow will exist in 9.9 
and 19 mm dia particles but it will be bubbly slug flow in 5.8 mm dia particles. Nevertheless, the 
dependence of flow regime on particle size is weak. 

4. CONCLUSIONS 

(i) Flow regimes have been identified through simple geometric models and predictions for 
co-current and counter-current flow compare reasonably well with the data. 

(ii) Models for particle-gas, particle-liquid and liquid-gas interfacial drag have been devel- 
oped. The models when incorporated in the force balance for the two phases, can be used 
to predict the pressure gradient and void fraction. 

Table I. Predicted flow regimes at flooding 

Bubbly 0.83-1.07 0.91-1.22 1.13-1.24 
Bubbly-slug 0.55-0.83 0.49-0.91 0.44-1.13 
Pure slug 0.45-0.55 0.40-0.49 0.33-0.44 
Slug-annular 0.21-0.45 0.17-0.40 0. l 1-0.33 
Pure annular 0-0.21 0-0.17 0-0.11 

Flow regime Dp --- 19 mm Dp = 9.9 mm Dp = 5.8 mm 
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(iii) Predictions of the pressure gradient and void fraction for co-current flow are within 10% 
of the data. For counter-current flow, the predictions can deviate by as much as 15% when 
the particles are not very large. 

(iv) The present model has been employed to predict counter-current flooding limits in porous 
layers composed of particles varying in size from 5.8 to 19 mm dia. Predictions are found 
to agree well with the existing flooding correlations and data. 

(v) The model shows that two counter-current sets of operating conditions are possible in 
flooding experiments. Conflicting behavior of void fraction and pressure drop reported by 
various investigators has thus been resolved by the present model. 
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A P P E N D I X  

Maximum Void Fraction Accommodated by the Particles' Surface (~o) 

The maximum number of bubbles which can be supported by the surface of particles can be 
obtained by dividing the surface area by the area required to support one single bubble. The void 
fraction ~0 then can be obtained simply as the ratio of gas volume to total pore volume. In the 
following analysis, certain assumptions about the geometry of the porous layer and flow 
configurations will be made. 

• The particles are assumed to be formed as rhombic arrays with center-to-center 
distance greater than Dp. This assumption is, of course, only valid on an average 
basis. The average distance, d, between two adjacent particles than can be given 
a s  

[ l 
= D ~ = L 6 ( 1 - E )  l " 

• The bubbles are crowded onto the surface of the particles as square arrays. The 
distance between two adjacent bubbles varies between D b and 2 D  b . In the present 
model, a value of v/3Db is chosen as the typical value of the side of the square 
arrays. The area required to accommodate one single bubble is thus given as 

Ab = 3D~. [A.2] 

Figure A.I shows a typical arrangement of two adjacent particles. The cross-hatched area 
represents the area inaccessible by the bubbles. The lost area for one particle can be given as 

A, = ~(1 + 7)0 + 7 - t/)D~, [A.3] 

where 7 is the diameter ratio between bubbles and particles and t/is given by [A. 1]. Furthermore, 
in a rhombic array, each particle is in the proximity of  12 other particles. Therefore, the maximum 
number of bubbles which can remain on the surface of one single particle is given by 

N _ n l + 7  
3 ~2 [6q - 5(1 + 7)]- [A.4] 
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Figure A.1. Bubble flow 
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path along the surface of  the particles. 
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This number of  bubbles, when multiplied by the volume of  each bubble and divided by the average 
pore volume seen by each particle, yields the following relation for ~0: 

n (1 - c) 7(1 at0 = -  + 7)[0/ - 5(1 + 7)] as long as at 0 >t 0. [A.5] 
3 E 

Maximum Void Fraction Without Merging of Bubbles (~q) 

Consider the gas bubble as another solid particle with diameter D b . Marshall & Dhir (1984) have 
shown that the minimum porosity for such a binary mixture is given by 

Esat = 0.40 -- 0.24(1 - -  7 )  2. [A.6] 

The minimum porosity c~t, however, simply represents the liquid volume contained in one unit 
volume of  the porous layer. Therefore, 

Esat = E(1 -- ~tl). [A.7] 

For  porous layers composed of  spherical particles, the porosity is nearly 0.40. Therefore, by 
combining [A.6] and [A.7] one obtains 

~ = 0.60(1 - 7) 2. [A.8] 

In the limit as 7 -o 0 flow in the pores will be similar to that in tubes. Therefore, the applicability 
of  [A.8] will be limited to ~ ~< 0.30. When 7 ~< 0.29, the transition void fraction ~l will be taken 
to be 0.30, similar to that in tube flows. 

M,F. 14/I--E 


